Tests of heat-shielding materials using an end-faced Hall plasma accelerator
COUNTRY OF ORIGIN
IDENTIFIER
BO6745PUBLISHED
2023-05-05LAST UPDATE
2023-05-06DEADLINE
Linked profile in other language
Responsible
Svetlana Markova
+375 29 752 8328
sveta_oms@itmo.by
+375 29 752 8328
sveta_oms@itmo.by
Summary
A.V.Luikov Heat and Mass Transfer Institute of the NAS of Belarus offers consumers a testing of heat-shielding materials using an end-faced Hall plasma accelerator under an outsourcing agreement or subcontracting.
Description
A.V.Luikov Heat and Mass Transfer Institute of the NAS of Belarus has developed an end-faced Hall plasma accelerator (EHA), which is used to conduct experimental studies of aerodynamics, heat transfer and thermal protection under conditions simulating the natural parameters of spacecraft flight in the atmospheres of the Earth and other planets of the solar system.
The end-faced Hall plasma accelerator is capable of simultaneously reproducing the necessary parameters: heat flux density, stagnation enthalpy (incoming flow velocity), stagnation pressure (incoming flow density), Mach number, atmospheric composition. The real conditions of the flow around the samples and fragments of the thermal protection of the spacecraft (SC) are simulated.
To carry out tests, the Institute has a technical base, which includes power sources, water and gas supply systems, a control panel, and devices designed to control the operating parameters of EHA. There is an automated measurement system and a computer system for video surveillance and video recording.
Tests of cylindrical models of heat-shielding materials are carried out according to the normal axisymmetric scheme. The sample is placed in a water-cooled holder of a given diameter, which is installed coaxially with the accelerator at a distance from the anode nozzle exit, which is necessary to obtain the corresponding plasma parameters in the working flow sections.
Characteristics of EHA are presented in the table:
The end-faced Hall plasma accelerator is widely used in research on ionospheric aerodynamics and experimental astrophysics (simulation of space phenomena), in thermonuclear research (as plasma injectors), plasma chemistry and other areas of scientific activity.
The Institute offers a testing of heat-shielding materials using an end-faced Hall plasma accelerator under an outsourcing agreement or subcontracting.
The end-faced Hall plasma accelerator is capable of simultaneously reproducing the necessary parameters: heat flux density, stagnation enthalpy (incoming flow velocity), stagnation pressure (incoming flow density), Mach number, atmospheric composition. The real conditions of the flow around the samples and fragments of the thermal protection of the spacecraft (SC) are simulated.
To carry out tests, the Institute has a technical base, which includes power sources, water and gas supply systems, a control panel, and devices designed to control the operating parameters of EHA. There is an automated measurement system and a computer system for video surveillance and video recording.
Tests of cylindrical models of heat-shielding materials are carried out according to the normal axisymmetric scheme. The sample is placed in a water-cooled holder of a given diameter, which is installed coaxially with the accelerator at a distance from the anode nozzle exit, which is necessary to obtain the corresponding plasma parameters in the working flow sections.
Characteristics of EHA are presented in the table:
Max power | 1200 kV |
Maximum Discharge Power | 700 kV |
Maximum magnetic field induction: | |
in the center on the axis of the solenoid | 3,5 Т |
in the discharge zone | 2,5 Т |
Gas consumption: | |
air, N2, CO2, He, Ar, H2 | 0,1−12 g/s |
thermal and kinetic efficiency | 60−95% |
Air plasma flow parameters: | |
stagnation enthalpy | 3−500 MJ/kg |
speed | 0,5–20 km/s |
mach number | 0,5−20 |
pressure in the braking zone | 0,01–1,0 atm |
Heat flux density to the frontal surface of the model: | |
total | 1–400·10^5 W/m² |
radiant | 0,5–200·10^5 W/m² |
Electron temperature: | |
in a free stream | 0,5–2,0 eV |
in a compressed layer | 1,0–4,0 eV |
The end-faced Hall plasma accelerator is widely used in research on ionospheric aerodynamics and experimental astrophysics (simulation of space phenomena), in thermonuclear research (as plasma injectors), plasma chemistry and other areas of scientific activity.
The Institute offers a testing of heat-shielding materials using an end-faced Hall plasma accelerator under an outsourcing agreement or subcontracting.
Advantages and Innovations
Advantages of the end-faced Hall plasma accelerator:
- high adhesion of applied layers;
- the ability to control internal stresses in the layer;
- low porosity of applied layers;
- controlled stoichiometry when applying compounds.
- high adhesion of applied layers;
- the ability to control internal stresses in the layer;
- low porosity of applied layers;
- controlled stoichiometry when applying compounds.
Stage of development
Field tested/evaluated (TRL8)
Comments regarding stage of development
Composite flexible thermal protection for descent vehicles with inflatable braking devices has been tested. The results were implemented in the projects "Mars-96", "Demonstrator", "Rescue System of the Fregat Block".
Funding source
State budged
Internal
Internal
IPR status
Copyright
Exclusive rights
Secret know-how
Exclusive rights
Secret know-how
Comments regarding IPS status
Author's certificates of the USSR No. 103877 and No. 1815927.
Sector group
Aeronautics, Space and Dual-Use Technologies
Intelligent Energy
Materials
Intelligent Energy
Materials
Organization information
Type
R&D institution
Year established
1952
NACE keywords
C.28.99 - Manufacture of other special-purpose machinery n.e.c.
M.72.19 - Other research and experimental development on natural sciences and engineering
M.74.90 - Other professional, scientific and technical activities n.e.c.
M.72.19 - Other research and experimental development on natural sciences and engineering
M.74.90 - Other professional, scientific and technical activities n.e.c.
Turnover (in EUR)
1-10M
Already engaged in transnational cooperation
Yes
Additional comments
A.V.Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus is the largest scientific institution in the republic dealing with the solution of fundamental and applied problems of heat and mass transfer, fluid dynamics, power engineering, heat engineering, chemical physics, physics of combustion and explosion, nanotechnology, as well as the creation of energy-efficient and environmentally friendly technologies and equipment, apparatus and devices for power engineering and mechanical engineering, agro-industrial complex and construction industry, medicine, chemical, electronic, radio engineering, food industry, space industry.
The Institute carries out scientific, scientific-organizational, and scientific-production interaction with academic and industrial research institutes, universities, design bureaus, associations, and enterprises of Belarus, Russia, Ukraine, Kazakhstan, Moldova, Uzbekistan, Lithuania, Latvia, China, USA, India, Germany, Poland , Czech Republic, Israel, Brazil, Italy, France, and other countries.
The Institute carries out scientific, scientific-organizational, and scientific-production interaction with academic and industrial research institutes, universities, design bureaus, associations, and enterprises of Belarus, Russia, Ukraine, Kazakhstan, Moldova, Uzbekistan, Lithuania, Latvia, China, USA, India, Germany, Poland , Czech Republic, Israel, Brazil, Italy, France, and other countries.
Languages spoken
English
Russian
Russian
Information about partnership
Type of partnership considered
Outsourcing agreement
Subcontracting
Subcontracting
Type and role of partner sought
Consumers interested in services for testing heat-shielding materials using an end-faced Hall plasma accelerator under an outsourcing agreement or subcontracting.
Type and size of partner sought
> 500
251-500
SME 51-250
SME 11-50
SME <= 10
R&D Institution
University
251-500
SME 51-250
SME 11-50
SME <= 10
R&D Institution
University
Attachments
Views: 946
Statistics since 05.05.2023 21:50:33
Statistics since 05.05.2023 21:50:33